Anzeige

Alternativer 3D-Blick

3D-Radarbildgebung mit Millimeterwellen-Technologie

Neueste Millimeterwellen-Radartechnologie bietet in vielen Applikationen einen, im Vergleich zu herkömmlichen optischen Kameras, alternativen oder ergänzenden Blick auf herausfordernde Applikationen in einem Bereich des Spektrums, der manch verstecktes Detail offenbart.

Bild: ©Timo Jaeschke
Bild 1: 3D-Radarscan mit Millimeterwellen eines Gehäuses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel.

Die Fortschritte in der Silizium-Germanium (SiGe) Technologie für Millimeterwellen-Radarsysteme, die in den letzten Jahren durch die Sensorik für das autonome Fahren erzielt wurden, führen mittlerweile zur Verfügbarkeit von günstigen und industrietauglichen Sensoren im Frequenzbereich bis 300GHz mit immer größeren Bandbreiten. Diese ermöglichen es, die dielektrischen Eigenschaften von Materialien sichtbar zu machen.

Bild: ©Timo Jaeschke
Bild 2 | 3D-Radarscanner bei 240GHz: direkt durch die Verpackung aufgenommene Nussschokolade

Dabei dringen die Wellen in viele nicht elektrisch leifähigen Medien ein. Zudem sind Millimeterwellen robust gegen Staub, Dampf/Nebel sowie dielektrische Materialien mit geringer relativer Permittivität, da diese Materialien durchdrungen werden. Metallbeschichtungen, dicke Wasserfilme oder wasserhaltige Materialien führen allerdings zur Totalreflexion. So ist die Untersuchung durch Papier-/Plastik-Verpackungen möglich (Bild 2). Auch gefrorene wasserhaltige Lebensmittel wie Tiefkühlpizzen lassen sich in der Verpackung auf Fremdkörper untersuchen, wobei neben metallischen auch dielektrische Fremdkörper (z.B. Kunststoff) erkannt werden. Besonders Übergänge zwischen unterschiedlichen dielektrischen Materialien führen durch die unterschiedlichen Reflexionseigenschaften zu starken Phasensprüngen in den Bildern, so dass die Detektion von Fremdkörpern möglich ist. Während bei 80GHz die Wellen bei den meisten Materialien eine gute Durchdringung, aber oft nicht ausreichende Auflösung aufweisen, führen höhere Frequenzen z.B. bei 240GHz in der Radarbildgebung zu einem aufgelösten und detailreicheren Bild mit guter Trennbarkeit der Reflexionen und für viele Anwendungen ausreichender Durchdringung. Die Nutzung des FMCW-Radarverfahrens erlaubt zudem eine präzise Höhen- bzw. Entfernungsvermessung von Gegenständen und das Erkennen von Reflexionen an kleinsten Defektstellen in reflektierenden Oberflächen. Die Auswertung von spektralen oder frequenzselektiven Effekten im Frequenzbereich und die Bestimmung der Permittivität ermöglichen die Gewinnung zusätzlicher Informationen über das Objekt und seine Materialien.

Ruhr-Universität Bochum

Dieser Artikel erschien in inVISION 3 2017 - 06.06.17.
Für weitere Artikel besuchen Sie www.invision-news.de