Anzeige

Machine Learning in der Fertigungs-IT

Manufacturing Analytics und künstliche Intelligenz

Die Bandbreite an Analyseanwendungen reicht von klassischen Reports und Kennzahlen über Self Service Analytics bis hin zu künstlicher Intelligenz. Bei aller Vielfalt sollte der Zweck nicht aus dem Fokus geraten: transparenter und effizienter fertigen zu können. Zumal immer wieder neue Manufacturing-Analytics-Instrumente entwickelt werden.

Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH
Klassische Analytics-Anwendungen haben noch lange nicht ausgedient: Das Maschinenzeitprofil im MES Hydra von MPDV.

Um wettbewerbsfähig produzieren zu können, brauchen Fertigungsunternehmen bestmögliche Transparenz. Denn nur wer weiß, wie es im Shopfloor gerade läuft, kann an den geeigneten Stellschrauben drehen und die Prozesse optimieren. Über die Jahre haben sich Werkzeuge wie Kennzahlen und deren Darstellung in Dashboards als nützlich herauskristallisiert. Heutzutage braucht es aber deutlich mehr - z.B. hält künstliche Intelligenz immer häufiger Einzug in die Fabrikhallen.

Klassische Anwendungen

Bisher gehören beispielsweise Auswertungen, Dashboards und Reports genauso wie Kennzahlen zu den gängigen Analytics-Werkzeugen. Viele dieser Anwendungen sind Bestandteil eines Manufacturing Execution Systems (MES) wie Hydra von MPDV. Beliebte Auswertungen sind beispielsweise die Ausschussstatistik, das Maschinenzeitprofil, der OEE-Report oder auch die klassische Regelkarte in der Qualitätssicherung. In allen Fällen entsteht der Mehrwert dadurch, dass Hydra Informationen darstellt, die aus erfassten Rohdaten berechnet bzw. aggregiert wurden. Im Sinne einer 'Rückspiegelbetrachtung' spricht man hier auch von Descriptive Analytics.

MPDV Mikrolab GmbH

Dieser Artikel erschien in IT&Production November 2019 - 08.11.19.
Für weitere Artikel besuchen Sie www.it-production.com