Anzeige

Machine Learning in der Fertigungs-IT

Manufacturing Analytics und künstliche Intelligenz

Die Bandbreite an Analyseanwendungen reicht von klassischen Reports und Kennzahlen über Self Service Analytics bis hin zu künstlicher Intelligenz. Bei aller Vielfalt sollte der Zweck nicht aus dem Fokus geraten: transparenter und effizienter fertigen zu können. Zumal immer wieder neue Manufacturing-Analytics-Instrumente entwickelt werden.

Bild: ©Alterfalter/stock.adobe.com / MPDV Mikrolab GmbH
Moderne Analyse auf Basis von künstlicher Intelligenz: Predictive Quality von MPDV

Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH
Klassische Analytics-Anwendungen haben noch lange nicht ausgedient: Das Maschinenzeitprofil im MES Hydra von MPDV.

Um wettbewerbsfähig produzieren zu können, brauchen Fertigungsunternehmen bestmögliche Transparenz. Denn nur wer weiß, wie es im Shopfloor gerade läuft, kann an den geeigneten Stellschrauben drehen und die Prozesse optimieren.

Bild: MPDV Mikrolab GmbHBild: MPDV Mikrolab GmbH
Machine Learning stellt die Methoden der klassischen Programmierung auf den Kopf und gewinnt damit an Flexibilität.

Über die Jahre haben sich Werkzeuge wie Kennzahlen und deren Darstellung in Dashboards als nützlich herauskristallisiert. Heutzutage braucht es aber deutlich mehr - z.B. hält künstliche Intelligenz immer häufiger Einzug in die Fabrikhallen. @Zwischenüberschrift:Klassische Anwendungen

Bisher gehören beispielsweise Auswertungen, Dashboards und Reports genauso wie Kennzahlen zu den gängigen Analytics-Werkzeugen. Viele dieser Anwendungen sind Bestandteil eines Manufacturing Execution Systems (MES) wie Hydra von MPDV. Beliebte Auswertungen sind beispielsweise die Ausschussstatistik, das Maschinenzeitprofil, der OEE-Report oder auch die klassische Regelkarte in der Qualitätssicherung. In allen Fällen entsteht der Mehrwert dadurch, dass Hydra Informationen darstellt, die aus erfassten Rohdaten berechnet bzw. aggregiert wurden. Im Sinne einer 'Rückspiegelbetrachtung' spricht man hier auch von Descriptive Analytics. @Zwischenüberschrift:Self Service Analytics

Oft gehen die Anforderungen von Fertigungsunternehmen über standardisierte Kennzahlen und vorgefertigte Auswertungen hinaus. Insbesondere wenn größere Datenmengen zur Analyse zur Verfügung stehen, bietet es sich an, auf Methoden des Self Service Analytics zurückzugreifen, um so eine individuelle Ursachenforschung zu betreiben. Der Klassiker hierfür ist die Pivot-Tabelle, die viele aus Excel kennen und die auch im MES Hydra zum Einsatz kommt. Ein Praxisbeispiel ist die Fehlerschwerpunktanalyse. Die flexible Anordnung von Datenfeldern in Zeilen und Spalten sowie der Einsatz von Filtern und Korrelationsfunktionen ermöglichen eine Eingrenzung von Daten auf relevante Werte. So kann jeder Anwender selbst entscheiden, wie seine Auswertung aussieht - er bedient sich im wahrsten Sinne des Wortes selbst und nutzt die angebotenen Werkzeuge, um an sein Ziel zu gelangen. Sollen Daten aus unterschiedlichen Quellen miteinander korreliert werden, lässt sich das MES-Cockpit von MPDV nutzen, welches zur Visualisierung auf Qlik-Technologie zurückreift. @Zwischenüberschrift:Advanced Analytics

Waren die zuvor beschriebenen Analysemethoden eher vergangenheitsbezogen, so gewinnen Echtzeitanwendungen immer mehr an Bedeutung. In Zeiten von Industrie 4.0 hört man in diesem Zusammenhang häufig Schlagworte wie künstliche Intelligenz (KI) oder Machine Learning. Dahinter verbergen sich Algorithmen und Methoden, die Daten in einer Weise analysieren, die dem menschlichen Verstand nachempfunden ist. Beispielsweise dienen große Datenmengen dazu, daraus ein Modell zu generieren, was die realen Abläufe hinreichend abbildet. Auf Basis dieses Modells können dann Abweichungen besser erkannt und eingeordnet werden. In den letzten Jahren konnte man in diesem Umfeld viel von Predictive Maintenance hören - also einer Möglichkeit, Störungen und Ausfälle von Maschinen vorherzusagen. Eine solche Anwendung kann auf modellbasierten Analysemethoden funktionieren. Ein anderes Beispiel für Advanced Analytics ist die zur Hannover Messe vorgestellte Lösung Predictive Quality von MPDV. @Zwischenüberschrift:Qualität vorhersagen

Grundannahme für die Vorhersage der Qualität ist, dass es auch dann zu Ausschuss oder Nacharbeit kommen kann, wenn sich alle Prozessparameter innerhalb der jeweils gültigen Toleranzen bewegen. Grund dafür sind komplexe Zusammenhänge und Wechselwirkungen, die oft auf die Fertigungstechnologie zurückzuführen sind. Die Anwendung Predictive Quality berücksichtigt diese Zusammenhänge und gibt Mitarbeitern in der Fertigung die Möglichkeit, sofort zu sehen, ob der aktuell produzierte Artikel Ausschuss oder ein gutes Teil ist - und das auch noch unter Angabe der Eintrittswahrscheinlichkeit. Die Vorhersage der Qualität und die Berechnung der Wahrscheinlichkeit basiert auf einer modellbasierten Echtzeitanalyse (Advanced Analytics) von Prozesswerten. Im Vorfeld dazu muss ein geeignetes Modell generiert und im Idealfall auch kontinuierlich verifiziert und weiterentwickelt werden. Künstliche Intelligenz spiel in beiden Fällen eine wesentliche Rolle. @Zwischenüberschrift:Potenziale von

KI nutzen

Es gibt viele Möglichkeiten für den Einsatz von künstlicher Intelligenz in der Fertigungs-IT. Daher hat sich der MES-Hersteller MPDV mit Perfect Pattern, einem Experten für künstliche Intelligenz in der Industrie, zusammengetan und ein gemeinsames Tochterunternehmen gegründet: AIMES - das steht für Artificial Intelligence for Manufacturing Excellence Solutions. Ziel dieser Ausgründung ist es, die Technologien von Perfect Pattern zu nutzen, um damit Produkte von MPDV zu verbessern und neue zu entwickeln. Der Fokus liegt dabei auf Machine Learning. @Zwischenüberschrift:Nutzen von Machine Learning

Die herkömmliche Vorgehensweise bei der Analyse von Daten sieht vor, dass der Input mittels eines Programms zum gewünschten Output verarbeitet wird. Bei Machine Learning hingegen füttert man das System mit Input und Output, um daraus ein Programm bzw. ein Modell erstellen zu lassen. Ein fachfremdes Beispiel soll diesen Unterschied verdeutlichen: Bisher fütterte man das System mit Bildern von unterschiedlichen Formen (Input) und das Programm konnte mittels Kantenerkennung feststellen, ob es sich um ein Dreieck, ein Viereck oder einen Kreis handelt (Output). Bei Machine Learning würde man dem System eine große Anzahl von Bildern von Dreiecken, Vierecken und Kreisen zeigen (Input) und diese der jeweiligen Kategorie zuweisen (Output). Daraus generiert das System ein Modell. Zeigt man dem System nun ein Bild von einem beliebigen Kreis, würde es diesen auf Basis des generierten Modells als solchen erkennen. Der Vorteil liegt auf der Hand: Man kann den gleichen Algorithmus dazu verwenden, Hunde von Katzen bzw. Autos von Fahrrädern zu unterscheiden - nur durch ein erneutes Anlernen und ohne Programmierung. Man muss dem System also nicht erklären, wie man A von B unterscheidet - das System lernt es quasi selbst. Oft sind die Einflussgrößen und deren Zusammenhänge untereinander auch gar nicht bekannt - man könnte einer Software also gar nichts erklären. Auf die Smart Factory bezogen ist dieser Vorteil essenziell, da die Komplexität, also die Zahl der möglichen Zustände, quasi unendlich ist. Eine Programmierung von Regeln zur Erkennung von Zuständen, Abweichungen und Störungen wäre schier unmöglich. Kontinuierliches Lernen (Machine Learning) erweist sich in diesem Fall als die bessere Methode. @Zwischenüberschrift:Anomalieerkennung

und Wiedererkennung

Beim Einsatz von Machine Learning in der Fertigung würde man also zunächst eine Anlernphase ansetzen, in der das System alle erfassten Daten inklusive daraus resultierender Entscheidungen und Maßnahmen zur Analyse bekommt. Anschließend erhält das System weiterhin die erfassten Daten und kann aufgrund der gemachten 'Erfahrungen' Abweichungen nach dem Motto erkennen: 'Habe ich bisher noch nicht gesehen, das muss eine Abweichung sein'. Die Art der Abweichung ist unerheblich - es kann sich auch um ein bisher unbekanntes Problem handeln. Im Zuge des kontinuierlichen Weiterlernens klassifiziert der Anwender bereits erkannte Anomalien, damit das System sie künftig nach dem Motto einordnen kann: 'Habe ich schon einmal erkannt, das ist ein Werkzeugbruch'. Somit wird die Software von ganz alleine immer besser. @Zwischenüberschrift:Ein neuer Trumpf im Blatt

Mögliche Einsatzbeispiele für Machine Learning in der Fertigung sind die Erkennung von Ausschuss anhand von Bildern oder Videos, die Erkennung und Einordnung von Maschinenstörungen anhand von Prozesswerten oder die Erkennung von Störungen im logistischen Ablauf der Fertigung. In einem nächsten Schritt könnte das System auf Basis der eigenen Erfahrungen Handlungsempfehlungen aussprechen oder sogar eigenständig optimierende Maßnahmen einleiten. Doch bei allem Potenzial, das in Machine Learning steckt, gilt weiterhin: In der werksnahen IT sollte je nach Anwendung entschieden werden, welche Methoden, Werkzeuge und Technologien eingesetzt werden. Künstliche Intelligenz ist lediglich eine weitere Trumpfkarte eines breit gefächerten Blattes im Kartenspiel der Industrie 4.0.

Das Modell Smart Factory Elements von MPDV ordnet die Abläufe einer modernen Fabrik in fünf Elemente ein, die einen Regelkreis bilden. Dieser sieht vor, dass auf Basis von Vorgaben unterschiedlicher Quellen die Fertigung geplant (Planning & Scheduling) und diese Planung dann umgesetzt (Execution) wird. Die dabei erfassten Daten werden analysiert (Analytics), um daraus unter anderem Vorhersagen abzuleiten (Prediction), die zusammen mit anderen Erkenntnissen wiederum in die Planung einfließen können. Das Industrial Internet of Things (IIoT) unterstützt diesen Kreislauf durch die Erfassung und Bereitstellung von Daten. Das Modell erweitert den Horizont bisheriger Fertigungs-IT wie beispielsweise MES um die Aufgabenfelder Analytics und Prediction, um die es in diesem Beitrag geht. Auch weiterhin lassen sich viele werksnahe Aufgaben hervorragend mit einem MES wie Hydra von MPDV abbilden. Mehr Infos unter: http://mpdv.info/faitpansfe.

Perfect Pattern ist ein Unternehmen mit innovativen Technologien und Produkten im Bereich der künstlichen Intelligenz. Es entstand 2012 durch Ausgründung aus dem mathematischen Institut der Ludwig-Maximilians-Universität München. Zusammen mit MPDV wurde AIMES gegründet, um gemeinsam am Einsatz von künstlicher Intelligenz in der Smart Factory zu arbeiten. Ein zentrales Produkt von Perfect Pattern ist Pythia, eine Plattform zur Mustererkennung in Echtzeit-Datenströmen. Die eingesetzte Machine-Learning-Technologie eignet

sich besonders, Anomalien und Störungen in der Smart Factory zu erkennen.

Mehr Infos unter: www.perfectpattern.de

MPDV Mikrolab GmbH

Dieser Artikel erschien in IT&Production November 2019 - 08.11.19.
Für weitere Artikel besuchen Sie www.it-production.com