Anzeige

Roboteranwendungen umsetzen

In drei Schritten programmiert

Die drei meist genutzten Verfahren, um Industrieroboter zu programmieren, sind die Teach-In-Programmierung, die grafische CAD-gestützte Offline-Programmierung und die klassische textuelle Programmierung. Welche Vor- und Nachteile diese Methoden haben und wie es gelingen kann, mit neuen Programmierverfahren den Anlagenanlauf zu beschleunigen, zeigt der folgende Beitrag.

Bild: ArtiMinds Robotics GmbHBild: ArtiMinds Robotics GmbH
Intuitive Programmierung via Drag and Drop von Templates und Wizard-gestützte Parametrisierung

Beim Teach-In-Verfahren erfolgt die Programmierung mit dem Teach-Pendant direkt am Roboter (Online-Programmierung). Sie zählt daher zu den einfachsten Methoden. Mit Hilfe von Knöpfen und Joysticks kann ein Bediener den Roboter in verschiedene Gelenkstellungen oder Stellungen seines Endeffektors bewegen. Die Positionen lassen sich auf diese Weise nacheinander aufzeichnen und die Punkte zu einer kontinuierlichen Bewegungsbahn zusammenfügen - ein einfacher Ansatz, der es jedoch keine spezifischern Möglichkeiten zulässt. Des Weiteren ist die Integration komplexer Programmlogik zur flexiblen Reaktion auf Sensorsignale von Kraft-Momenten-Sensoren oder Kameras nicht möglich. Daher ist die reine Teach-Pendant basierte Programmierung auf einfache Industrieroboteranwendungen beschränkt. Grafische Offlineprogrammierung geht einen Schritt weiter, indem für die Berechnung optimaler Bewegungspfade die Geometrie der Roboteranlage sowie der Werkstücke genutzt wird. Die Handhabung der dafür benötigten Software ist komplizierter ist als die Nutzung eines Teach-Pendants. Anwender benötigen CAD/CAE-Erfahrung, um die Benutzerschnittstellen und den Programmierablauf optimal nutzen zu können. Die CAD-Modelle der Anlage und Werkstücken werden in diese Softwaresysteme importiert, so dass Roboter fernab der Anlage an einem Büroarbeitsplatz programmiert werden können. In der dreidimensionalen Simulationsumgebung lassen sich Wegpunkte schneller und flexibler als beim Teach-In-Verfahren am realen Roboter definieren bzw. ändern. Der Entwurf möglichst optimaler Bewegungsprofile wird durch die Software unterstützt. Daher ist die automatische Berechnung kollisionsfreier Teilbewegungen in solchen Umgebungen recht einfach möglich. Die Herausforderung liegt jedoch meist in der Übertragung des Programms auf die reale Roboterumgebung, da aufgrund von Kalibrierungsungenauigkeiten oder Abweichungen zwischen Modell und Realität weitere Anpassungen nötig werden.

ArtiMinds Robotics GmbH

Dieser Artikel erschien in IT&Production 7 (September) 2020 - 03.09.20.
Für weitere Artikel besuchen Sie www.it-production.com